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Fig. S1. Plots showing the bidirectional calculation time needed for the three parameters ANIb (yellow), ANIm (red), and TETRA (green) with different datasets
of different sizes. Left plot indicates the increase in calculation time based on sets of raw 454 reads. As can be seen, the comparison of two sets of �20,000 reads
of �250 nucleotides increases of �25 times the calculation of ANIb over ANIm. Right plot indicates the increase in calculation time based on fully sequenced
genomes with different genome sizes (�1 to �4.2Mb). As can be seen, the speed of calculation is in all cases much faster, but ANIb still shows a slower speed
(�3�) over ANIm. Tests were performed on a Dual Core Intel 2.2GHz with 4 GiB of memory, using BLAST 2.2.18 and MUMmer 3.0.
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Fig. S2. Regression images of pairwise comparisons of TETRA signatures as they appear in the program JSpecies.
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Fig. S3. Recalculating the mean of ANIb values of four selected sets of organisms with different genome identities. The analysis had been performed by a
continuous reduction of the sliding window of the alignments produced after the automatic genome splicing in 1,020 nucleotide stretches (100%, 50%, 25%,
12.5%, 6.25%, 3.13%, and 1.5%). Standard deviation is indicated by the bars for each window: The chart is calculated with the following datasets: (i) Escherichia
coli ATCC 8739 vs. BL21 sliding windows include (%/alignments/replicates): 100%/4120/1, 50%/2060/2060, 25%/1030/3090, 12.5%/515,3605, 6.25%/257/3863,
3.13%/128/3992, and 1.5%/64/4056. (ii) Neisseria meningitidis FAM18 vs. O53442 sliding windows include (%/alignments/replicates): 100%/1852/1, 50%/926/926,
25%/463/1389, 12.5%/231/1621, 6.25%/115/1737, 3.13%/57/1795, and 1.5%/28/1823. (iii) Helicobacter pylori G27 vs. J99 sliding windows include (%/alignments/
replicates): 100%/1422/1, 50%/711/711, 25%/355/1067, 12.5%/177/1245, 6.25%/88/1334, 3.13%/44/1378, and 1.5%/22/1400. (iv) Bacillus cereus ATCC14579 vs. Q1
sliding windows include (%/alignments/replicates): 100%/4056/1, 50%/2028/2028, 25%/1014/3044, 12.5%/507/3551, 6.25%/253/3806, 3.13%/126/3932, 1.5%/
63/3996.
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